Synthesis of Porous Materials


Novel hierarchical bifunctional Ga​/HZSM-​5 nanosheets.



Porous materials are solids that contain pores (voids or empty spaces) within their structure. These pores allow the materials to store, transport, or react with molecules. Porous materials are widely applied in various fields, including catalysis, ion exchange, adsorption, filtration, and energy storage, owing to their ability to interact with fluids and gases. Based on pore size, they are classified into micropores (<2 nm), mesopores (2–50 nm), and macropores (>50 nm). Examples of porous materials include metal-organic frameworks (MOFs), mesoporous silica materials, and especially zeolites. In this work, we have been designing zeolites to improve catalytic activity through the development of hierarchical zeolites1-10, zeolite composites11-21, and metal-incorporated zeolites22-31. Moreover, we focus on synthesizing zeolites from waste materials such as sand, glass slides, and agricultural waste (e.g., corn cobs).1-2

  • Hierarchical zeolites possess a multi-level porous structure, typically combining micropores inherent to zeolite frameworks with mesopores and/or macropores. This multi-scale porosity addresses a major limitation of conventional zeolites—slow mass transport due to small micropores—by introducing larger pores to improve diffusion, accessibility to active sites, and overall catalytic performance. Therefore, we are developing various types of hierarchical zeolites, such as Faujasite (FAU), Zeolite Beta (BEA), ZSM-5 (MFI), Mordenite (MOR), ZSM-12 and ZSM-48 and Ferrierite (FER), for applications including ethanol conversion to high-value chemicals, glucose transformation to HMF and FDCA, and propane aromatization.1-10
  • Zeolite composites are hybrid materials in which zeolites are combined with other components, such as metal oxides, metal-organic frameworks (MOFs), carbonaceous materials (e.g., CNTs), or other zeolites, to enhance functionality beyond what pure zeolites can offer. These composites are designed to improve properties such as thermal stability, acidity/basicity, mass transport, mechanical strength, and catalytic performance. For example, BEA-CNT composites have shown synergistic behavior between the zeolite and the carbon nanotube framework.11-21
  • Metal incorporation in zeolites enhances the dispersion of active metal sites within the zeolite framework. These metal-zeolite composites are engineered for multifunctional applications in catalysis, such as biomass (glucose/ethanol) conversion22-28, dehydrogenation/aromatization of alkanes29-30, and CO₂ hydrogenation.31-32


Reference:


1.     Salakhum, S.; Prasertsab, A.; Klinyod, S.; Saenlung, K.; Witoon, T.; Wattanakit, C.* Sustainable transformation of natural silica-rich solid and waste to hierarchical zeolites for sugar conversion to hydroxymethylfurfural (HMF) Microporous and Mesoporous Mater., 2021, 111252.

2.     Salakhum, S.; Yutthalekha, T.; Chareonpanich, M.; Limtrakul J.; Wattanakit, C.* Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous and Mesoporous Materials, 2018, 258, 141-150.

3.     Wannapakdee, W.; Wattanakit, C.*; Paluka, V.; Yutthalekha, T.; Limtrakul, J. One-​pot synthesis of novel hierarchical bifunctional Ga​/HZSM-​5 nanosheets for propane aromatization. RSC Advances, 2016, 6, 2875-2881.

4.     Yutthalekha, T.; Wattanakit, C.; Warakulwit, C.; Wannapakdee, W.; Rodponthukwaji, K.; Witoon, T.; Limtrakul, J.* Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for Benzylation of Toluene. Journal of Cleaner Production, 2017, 142 (3), 1244-1251.

5.     Shetsiri, S.; Thivasasith, A.; Wannapakdee, W.; Saenluang, K.; Wetchasat, P.; Salakhum, S.; Nokbin, S.; Limtrakul, J.; Wattanakit, C.* Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets. Sustainable Energy & Fuels, 2019, 3, 115-126.

6.     Dugkhuntod, P.; Imyen, T.*; Wannapakdee, W.; Yutthalekha.; Salakhum, S.; Wattanakit, C. Synthesis of Hierarchical ZSM-12 Nanolayers for Levulinic Acid Esterification with Ethanol to Ethyl Levulinate. RSC Adv. 2019, 9, 18087–18097.

7.     Imyen, T.; Saenluang, K.; Dugkhuntod, P.; Wattanakit, C.* Investigation of ZSM-12 nanocrystals evolution derived from aluminosilicate nanobeads for sustainable production of ethyl levulinate from levulinic acid esterification with ethanol

8.     Iadrat, P.; Hori, N.; Atithep, T.; Wattanakit, C.* Effect of Pore Connectivity of Pore-Opened Hierarchical MOR Zeolites on Catalytic Behaviors and Coke Formation in Ethanol Dehydration. ACS Appl. Mater. Interfaces, 2021, 13, 8294-8305.

9.     Rodaum, C.; Thivasasith, A.; Iadrat, P.; Kidkhunthod, P.; Pengpanich, S.; Wattanakit, C.* Ge‐Substituted Hierarchical Ferrierite for n‐pentane Cracking to Light Olefins: Mechanistic Investigations via In‐situ DRIFTS Studies and DFT Calculations 
ChemCatChem.2021, https://doi.org/10.1002/cctc.202101045

10.   Pornsetmetakul, P.; Coumans, F.; Heinrichs, J.; Zhang, H.; Wattanakit, C; Hensen,E.* Accelerated Synthesis of Nanolayered MWW Zeolite by Interzeolite Transformation. Chem. Eur. J. CHEM-EUR J, 2023

11.  Suttipat, D.; Saenluang, K.; Wannapakdee, W.; Dugkhuntod, P.; Ketkaew, M.; Pornsetmetakul, P.; Wattanakit, C.* Fine-tuning the surface acidity of hierarchical zeolite composites for methanol-to-olefins (MTO) reaction Fuel., 2020, 286, 119306.

12.  Iadrat, P.; Jongthong, J.; Prasertsab, A.; Thanphrom, S.; Toewiwat, N.; Ittisanronnachai, S.;  Wongnate. T.; Wattanakit, C.* Nanocrystalline BEA-CNT Composites with High Metal Dispersion Obtained via Inter-Zeolite Transformation for Antibacterial Application, ACS Appl. Mater. Interfaces 2023.

13.  Suttipat, D.; Wannapakdee, W.; Yutthalekha, T.; Ittisanronnachai, S.; Ungpittagul, T.; Phomphrai, K.; Bureekaew, S.; Wattanakit, C.* Hierarchical FAU/ZIF8 hybrid materials as highly efficient acid-base catalysts for aldol condensation. ACS Applied Materials & Interfaces, 2018, 10, 16358-16366.

14.  Imyen, T.; Znoutine, E.; Suttipat, D.; Iadrat, P.; Kidkhunthod, P.; Bureekaew, S.; Wattanakit, C.* Methane Utilization to Methanol by Hybrid Zeolite@Metal–Organic Framework ACS Appl. Mater. Inter., 2020, 12, 23812–23821.

15.  Modified acid-base ZSM-5 derived from core-shell ZSM-5@aqueous miscible organic-layered double hydroxides for catalytic cracking of n-pentane to light olefins. ChemCatChem, 2020,124288 – 4296.

16. Rodaum, C.; Suttipat, D.; Morey, J.; Atithep, T.; Witoon, T.; Wattanakit, C.*
Core‐Shell Faujasite@Aqueous Miscible Organic‐Layered Double Hydroxides Composites with Tunable Acid/Base Properties for One‐Pot Synthesis of Ethyl trans‐α‐Cyanocinnamate. Adv. Mater. Interfaces, 2021, 8, 2002259. 

17.  Saenluang, K.; Srisuwanno, W.; Salakhum, S.; Rodaum, C.; Dugkhuntod, P.; Wattanakit, C.* Nanoporous Sn-Substituted ZSM-48 Nanostructures for Glucose Isomerization
ACS Appl. Nano Mater., 2021, 4, 11, 11661–11673.Thivasasith, A.; Rodaum, C.; Nunthakitgoson, W.; Assavapanumat, S.; Wattanakit, C.* Fine-tuning the catalytic cracking-assisted synthesis of plastic-derived MWCNTs-supported metal oxides for methanol electrooxidation. Carbon Trends., 2022, 100158.

18.  Rodaum, C.; Klinyod, S.; Nunthakitgoson, W.; Chaipornchalerm, P.; Liwathananukul, N.; Iarat, P.; Wattanakit, C.* Binder-free hierachical zeolite pellets and monoliths derived from ZSM-5@LDH composites for bioethanol dehydration to ethylene. ChemComm., 2022, https://doi.org/10.1039/D2CC02200A

19.  Tantisriyanurak, S.; Klinyod, K.; Leangsiri, W.; Nunthakitgoson, W.; Soyphet, A.; Ketkaew, M.; Thivasasith, A.; Iadrat, P.; Rodaum, C.; Atithep, T.; Nguyen, M.; Yonezawa, T.; Wattanakit, C.;* Carbon Nanotubes Deposited on Mordenite Zeolite/NiAl-Layered Double Hydroxide Composites as Electrocatalysts for 2,5-Furandicarboxylic Acid Production from 5-Hydroxymethylfurfural. ACS Appl. Nano Mater. 2023, 6, 10, 8784–8794

20.  Prasertsab, A.; Leangsiri, W.; Salakhum, S.; Yomthong, K.; Ittisanronnachai,S.; Watcharasing, S.; Kiattikomol, P.; Wattanakit, C.* Transformation of Production Sand Waste to FAU and LTA Zeolites for Selective Moisture Adsorption and Ethanol Conversion Topics in Catalysis (2023)

21.  Iadrat, P.; Jongthong, J.; Prasertsab, A.; Thanphrom, S.; Toewiwat, N.; Ittisanronnachai, S.;  Wongnate. T.; Wattanakit, C.* Nanocrystalline BEA-CNT Composites with High Metal Dispersion Obtained via Inter-Zeolite Transformation for Antibacterial Application. ACS Appl. Mater. Interfaces 2023,

22.  Maineawklang, N.; Iadrat, P.; Pornsetmetakul, P.; Prasertsab, A.; Chaipornchalerm, P.; Salakhum, S.; Tantisriyanurak, T.; Rodaum, C.; Wattanakit, C.* Ni/Hierarchical Zeolites Derived from Zeolites@Layered Double Hydroxides (LDHs) Composites for Furfural Hydrogenation.ChemNanoMat, 2024 https://doi.org/10.1002/cnma.202400100

23.   Prasertsab, A.; Maihom, M*.; Probst, M.; Wattanakit, C.; Limtrakul, J. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution. Inorganic Chemistry, 2018, 57, 6599-6605.

24.  Salakhum, S.; Yutthalekha, T.; Shetsiri, S.; Witoon, T.; Wattanakit, C.* Bifunctional and Bimetallic Pt–Ru/HZSM-5 Nanoparticles for the Mild Hydrodeoxygenation of Lignin-Derived 4-Propylphenol. ACS Appl. Nano Mater. 2019, 2, 1053-1062.

25.  Saenluang, K.; Thivasasith, A.*; Dugkhuntod, P.; Pornsetmetakul, P.; Salakhum, S.; Namuangruk, S.; Wattanakit, C. In Situ Synthesis of Sn-Beta Zeolite Nanocrystals for Glucose to Hydroxymethylfurfural (HMF). Catalysts, 2020, 10, 1249.

26.  Saenluang, K.; Thivasasith, A.*; Dugkhuntod, P.; Pornsetmetakul, P.; Salakhum, S.; Namuangruk, S.; Wattanakit, C. In Situ Synthesis of Sn-Beta Zeolite Nanocrystals for Glucose to Hydroxymethylfurfural (HMF) Catalysts, 2020, 10, 1249.

27.  Dugkhuntod, P.; Maineawklang, N.; Rodaum, C.; Pornsetmetakul, P.; Saenlung, K.; Salakhum, S.; Wattanakit, C.* Synthesis and Characterization of Sn, Ge, and Zr Isomorphous Substituted MFI Nanosheets for Glucose Isomerization to Fructose. ChemPlusChem2021, 87(1).

28.  Srisuwanno, W.; Saenluang, K.; Prasertsab, A.; Salakhum, S.; Kidkhuntod, P.; Namuangrak, S*.; Wattanakit, C*. Isolated Hf-Isomorphously Substituted Zeolites for One-Pot HMF Synthesis from Glucose Adv. Sustain. Syst., 2022, Doi: https://doi.org/10.1002/adsu.202200403

29.  Wannapakdee, W.; Yutthalekha, T.; Dugkhuntod, P.; Rodponthukwaji, K.; Thivasasith, A.; Nokbin, S.; Witoon, T.; Pengpanich, S.; Wattanakit, C.* Dehydrogenation of propane to propylene using promoter-free hierarchical Pt/silicalite-1 nanosheets. Catalysts, 2019, 9, 174.

30.  Wannapakdee, W.; Suttipat, D.; Dugkhuntod, P.; Yutthalekha, T.; Thivasasith, A.; Kidkhunthod, P.; Nokbin, S.; Pengpanich, S.; Limtrakul, J.; Wattanakit, C.* Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel, 2019, 236, 1243-1253.

31.  Prasanseang, W.; Maineawklang, N.; Liwatthananukul, N.; Somsri, S.;Wattanakit, C.* Synthesis, characterization, and CO2 methanation over hierarchical ZSM-5-NiCoAl layered double hydroxide nanocomposites: Improvement of C-C coupling to ethane 
ChemPhysChem. 2024 https://doi.org/10.1002/cphc.202400926

32.  Xu, S.; Dugkhuntod, P.; Ding, S.; Zhang, Y.; Gosalvitr, P.; Chen, S.; Huang, J.; Klinyod, K.; Chansai, S.; Hardacre, C.; Wattanakit, C*.; Fan, X*. Product Selectivity Controlled by the Nano-Environment of Ru/ZSM-5 Catalysts in Nonthermal Plasma Catalytic CO2 Hydrogenation. Appl. Catal. B, 2024. https://doi.org/10.1016/j.apcatb.2024.123826

POROUS HETEROGENEOUS CATALYSIS CENTER, PHCC

School of Energy Science and Engineering (ESE), VISTEC
Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210 Thailand
Telephone: +66(0) 33 01 4255  
Email: chularat.w@vistec.ac.th

FOLLOW US